Energia mechaniczna

Liczba slajdów:
27
Autor:
Nieznany
Rozmiar:
426.00 KB
Ilość pobrań:
28
Ilość wyświetleń:
2870
Kategoria:
Energia mechaniczna - Slajd 26
Energia mechaniczna - Slajd 0
Energia mechaniczna - Slajd 1
Energia mechaniczna - Slajd 2
Energia mechaniczna - Slajd 3
Energia mechaniczna - Slajd 4
Energia mechaniczna - Slajd 5
Energia mechaniczna - Slajd 6
Energia mechaniczna - Slajd 7
Energia mechaniczna - Slajd 8
Energia mechaniczna - Slajd 9
Energia mechaniczna - Slajd 10
Energia mechaniczna - Slajd 11
Energia mechaniczna - Slajd 12
Energia mechaniczna - Slajd 13
Energia mechaniczna - Slajd 14
Energia mechaniczna - Slajd 15
Energia mechaniczna - Slajd 16
Energia mechaniczna - Slajd 17
Energia mechaniczna - Slajd 18
Energia mechaniczna - Slajd 19
Energia mechaniczna - Slajd 20
Energia mechaniczna - Slajd 21
Energia mechaniczna - Slajd 22
Energia mechaniczna - Slajd 23
Energia mechaniczna - Slajd 24
Energia mechaniczna - Slajd 25
Energia mechaniczna - Slajd 26
Energia mechaniczna - Slajd 0

Treść prezentacji

1
ENERGIA MECHANICZNA Ważne jest by nigdy nie przestać pytać. Ciekawość nie istnieje bez przyczyny. Wystarczy więc, jeśli spróbujemy zrozumieć choć trochę tej tajemnicy każdego dnia. Nigdy nie trać świętej ciekawości. Kto nie potrafi pytać nie potrafi żyć. Albert Einstein
2
Czym jest energia mechaniczna? Aby samochód mógł poruszać się, w jego silniku musi być spalana benzyna. Skrzydła wiatraka poruszają się tylko pod wpływem wiatru. Człowiek jest zdolny do życia i pracy tylko wtedy, gdy jego organizm otrzymuje odpowiednie ilości pożywienia. O człowieku, który może wykonać dużą pracę mówimy, że ma dużo energii.
3
Jednak zanim zastanowimy się czy to stwierdzenie jest słuszne musimy przypomnieć sobie kilka pojęć: Układem ciał nazywamy układ w którym dwa lub więcej ciał oddziałuje ze sobą. Siły wzajemnego oddziaływania na siebie ciał tworzących układ są siłami wewnętrznymi układu. Siły pochodzące spoza układu nazywamy siłami zewnętrznymi.
4
Przykłady układów ciał wzajemnie oddziałujących. Przykład1 Ściśnięta sprężyna i klocek stanowią układ dwóch ciał, które działają na siebie siłami sprężystości. Układ klocek luźna sprężyna nie jest w stanie wykonać pracy. F Siła zewnętrzna wykonuje pracę, ściskając sprężynę i przesuwając klocek. Sprężyna jest zdolna do wykonania pracy. Sprężyna wykonała pracę, przesuwając klocek do początkowego położenia
5
Przykłady układów ciał wzajemnie oddziałujących. Przykład 2 Gdy wprawimy w ruch kule ona uderzy w kręgle i je przewróci. My wykonaliśmy nad kulą pracę, a poruszająca się kula ma energię. Kula, uderzając w kręgle, przewraca je wykonując nad nimi pracę. Kula zatrzymując się, traci energię.
6
Czym jest energia mechaniczna? O układzie ciał który jest zdolny do wykonania pracy mówimy, że posiada energię mechaniczną.
7
Kiedy zmienia się energia mechaniczna? Im większa praca zostanie wykonana przez siły zewnętrzne, tym większą energię będzie posiadał układ ciał i tym większą pracę będzie on mógł wykonać, wracając do poprzedniego stanu.
8
Czemu jest równa energia mechaniczna? Przyrost energii mechanicznej układu ΔE jest równy pracy sił zewnętrznych wykonanej nad tym układem: ΔEWZ Jednostką energii jest 1J (1dżul)
9
Podział energii mechanicznej Energia mechaniczna Energia potencjalna Energia kinetyczna Jednostka energii mechanicznej (energii potencjalnej i energii kinetycznej) jest 1 J (dżul)
10
Energia potencjalna Energię taką posiada ciało, które oddziałuje z innym ciałem siłami grawitacyjnymi (energia potencjalna grawitacji) lub siłami sprężystości (energia potencjalna sprężystości).
11
Przykład 1: Rozciągając lub ściskając sprężynę, siły zewnętrzne wykonują nad nią pracę, w wyniku czego uzyskuje ona energię potencjalną sprężystości. F Wykonanie pracy nad sprężyną (rozciągamy ją). W tym przypadku sprężyna ma największą energię potencjalną Podczas powrotu sprężyny do stanu początkowego może ona wykonać pracę kosztem energii potencjalnej sprężystości.
12
Przykład 2: Energię potencjalną sprężystości posiada również naciągnięty łuk. W tej sytuacji, gdy nie naciągniemy cięciwy, łuk nie posiada energii potencjalnej sprężystości. Gdy natomiast wykonamy pracę i napniemy łuk cięciwa posiada energię potencjalną sprężystości. Puśćmy teraz cięciwę wraca ona do swojego poprzedniego stanu.
13
Przykład 3: Podnosimy klocek ruchem jednostajnym o masie m na wysokość h. Stan 2 E p2 F h Stan 1 Fg E p1 Wykonanie pracy Wz przez siłę zewnętrzną F powoduje wzrost energii potencjalnej od Ep1 do Ep2: WzEp2-Ep1 Jak już wiecie pracę tę możemy obliczyć za pomocą wzoru: WzF h. Ponieważ ciało podnosimy ruchem jednostajnym, to wartość siły F jest równa wartości siły jaką Ziemia przyciąga ciało: WzF h m g h Zatem: Ep2 -Ep1m g h Jeżeli założymy, że na powierzchni Ziemi energia Potencjalna jest równa zero, to powyższy wzór przyjmie postać: Ep2m g h Przez Ep1 oznaczamy energię potencjalną w stanie 1, natomiast Ep2 energię potencjalną w stanie 2.
14
Wzór na energię potencjalną grawitacji Na wysokości h nad tzw. poziomem zerowym ciało o masie m posiada energię potencjalną grawitacji równą: Epmgh
15
Energia kinetyczna Energia ta związana jest z ruchem. Każde ciało, które w danym układzie odniesienia jest w ruchu, to mówimy że posiada energię kinetyczną.
16
Przykład Rozpatrzmy następujący przypadek: v v 0 F F stan1 stan2 Na gładkiej powierzchni stołu znajduje się wózek o masie m. Początkowo jest on w spoczynku (stan1) względem układu odniesienia jakim jest stół, a zatem jego energia kinetyczna Ek1 równa jest zero. Pod wpływem stałej wypadkowej siły Fwózek (zgodnie z II zasadą dynamiki) będzie poruszał się ruchem jednostajnym przyspieszonym o przyspieszeniu a. Po pewnym czasie t wózek uzyskał energię kinetyczną Ek2 . Przyrost energii kinetycznej wózka Ek2-Ek1 równy jest pracy wykonanej przez siłę wypadkową F : 1 s a t 2 F m a Ponieważ oraz , to przyrost energii kinetycznej wynosi: 2 1 1 E E k 2 E k1 W F s (m a) a t 2 m (a t ) 2 2 2 Gdy uwzględnimy fakt, iż szybkość chwilowa po czasie t w ruchu jednostajnie 1 E E m v 2 v a t k2 k1 2 1 przyspieszonym (gdy vo0), równa jest otrzymujemy: 2 E k 2 m v 2
17
Wzór na energię kinetyczną Ciało o masie m poruszające się w danym układzie odniesienia z szybkością v posiada w tym układzie energie kinetyczna równą: Ek mv2 1 2
18
ZASADA ZACHOWANIA ENERGII 1. 2. Na co dzień obserwujemy przemianę jednego rodzaju energii mechanicznej na drugi. Na przykład energii potencjalnej na kinetyczną w następującym przypadku: Napięty łuk ma energię potencjalną sprężystości, ale po wypuszczeniu cięciwy przekształca się na energię kinetyczną łuku. Jabłko wiszące na gałęzi jabłoni posiada energię potencjalną grawitacji, kiedy się zerwie i zacznie spadać energia potencjalna będzie zmieniać się na energię kinetyczną.
19
Zasada zachowania energii Rozpatrzmy jak w kolejnych etapach wznoszenia i opadania piłki zmienia się energia kinetyczna i potencjalna ciała (na wysokości piłeczki podane są wartości danej energii). E p m g h E k 0 E p Ek E p Ek h h v0 E p 0 E p 0 1 E k m v 2 2 1 E k m v 2 2
20
Zasada zachowania energii mechanicznej Jeśli przemiany energii mechanicznej zachodzą wewnątrz układu ciał, to całkowita energia mechaniczna (suma energii potencjalnej i kinetycznej) układu jest zachowana nie zmienia się. Zasadę zachowania energii mechanicznej wolno stosować tylko wtedy, gdy możemy pominąć siły tarcia i inne opory ruchu.
21
ZADANIA
22
1.Oblicz energię kinetyczną rowerzysty m o masie 50kg jadącego z prędkością 10 s . Dane: m 50kg m v 10 s Szukane: Ek Rozwiązanie: Wyznaczamy energię kinetyczną: 1 E k m v 2 2 1 m E k 50kg 10 2 s 2 m2 E k 25kg 100 2 s E k 2500 J Odpowiedź: Rowerzysta jadąc z prędkością 10 m posiadał energię kinetyczną s równą 2500J.
23
2.Oblicz energię kinetyczną piłkimo masie 0,5kg poruszającej się z prędkością 4 s . Jaka siłą musi działać bramkarz, by zatrzymać tę piłkę na odległości 0,5m? Dane: m 0,5kg m v 4 s s 0,5m Szukane: Ek , F Rozwiązanie: Aby wyznaczyć siłę z jaka bramkarz zatrzyma piłkę musimy wykorzystać fakt iż energia mechaniczna równa jest wykonanej pracy: E W F s E F s : s E 4J F 8 N s 0,5m Wyznaczamy energię kinetyczną: 2 1 1 m E k m v 2 0,5kg 4 4 J 2 2 s Odp: Bramkarz musi działać siłą 8N, aby zatrzymać piłkę o energii kinetycznej 4J.
24
Jaką energię potencjalną ma wazon o masie 0,7kg podniesiony ze stołu o wysokości 1m na segment. Szafka segmentu znajduje się na wysokości 0,8m nad poziomem stołu. Dane: m 0,7 kg h1 1m Szukane: h2 1,8m g 10 m s2 Rysunek pomocniczy: h2 h1 Ep Rozwiązanie: Energię potencjalną wyznaczymy ze wzoru: E p m g h Wysokość na jakiej będzie wazon to: h h1 h2 E p m g (h1 h2 ) E p 0,7 kg 10 m (1m 0,8m) 2 s m E p 70kg 2 1,8m s E p 126 J Odp: Wazon ma energię potencjalną równą 126J
25
Na jakiej wysokości znajduje się ciało o masie 2kg, jeżeli jego energia potencjalna wynosi 0,4kJ. Dane: m 2kg E p 0,4kJ 400 J Szukane: h m g 10 2 s Rozwiązanie: E p m g h : (m g ) h h Ep m g 400 J m s2 m 400kg 2 m s h m 20kg 2 s h 20m 2kg 10 Odp: Ciało o masie 2kg znajduje się na wysokości 20m.
26
Z jakiej wysokości trzeba zrzucić piłkę, aby osiągnęła prędkość 72 kmh w chwili uderzenia o ziemię? Dane: Rozwiązanie: km 1000m m v 72 72 20 h 3600s s Zgodnie z zasadą zachowania energii mechanicznej : energia potencjalna jest równa energii kinetycznej. Szukane: h E p Ek Rysunek pomocniczy: E p m g h h 1 E k m v 2 2 1 m g h m v 2 : m 2 1 g h v 2 : g 2 v2 h 2g 2 m 20 s h m 2 10 2 s m2 400 2 s h m 20 2 s h 20m Odp: Piłkę należy zrzucić z wysokości 20m.
27
Jaka prędkość końcową osiągnie ciało spadające z wysokości h20m? . Dane: h 20m m g 10 2 s Szukane: v Rozwiązanie: Z zasady zachowania energii wynika, że energia potencjalna ciała w chwili wyrzucenia jest równa co do wartości energii kinetycznej, jaka osiągnie ciało w momencie uderzenia o ziemię E p Ek 1 m m h g m v 2 : 2 2 2m h g v2 m v 2 2h g v 2h g Odp: Ciało spadające z wysokości 20m osiągnie prędkość 20ms. v 2 20m 10 m2 v 400 2 s m v 20 s m s2

Mogą Cię zainteresować

Błyskawice - Slajd 1

Błyskawice

Błyskawice
Metale i ich zastosowania - Slajd 1

Metale i ich zastosowania

Metale i ich zastosowania
Dlaczego fizyka jest taka trudna? - Slajd 1

Dlaczego fizyka jest taka trudna?

Dlaczego fizyka jest taka trudna?
Fizyka współczesna - Slajd 1

Fizyka współczesna

Fizyka współczesna

O stronie

Świat prezentacji to vortal zawierający prezentacje multimedialne przeznaczone nie tylko dla uczniów, ale i nauczycieli. Tylko w naszym vortalu znajdziesz ogrom wiedzy przedstawiony na slajdach prezentacji. Dzięki nam łatwiej przygotujesz się do lekcji czy odrobisz zadanie domowe. Prezentacje podzielone są na kategorię aby łatwiej było Ci odnaleźć to czego szukasz. Nazwy kategorii odpowiadają nazwą przedmiotów szkolnych. Dzięki nam zapomnisz czym jest pracochłonne przygotowywanie prezentacji i ściągniesz "gotowca".

Ostanio dodane

2017 © Wszystkie prawa zastrzeżone

Używamy plików cookies, aby dostosować zawartość strony do Twoich preferencji i oczekiwań oraz zapewnić Ci wygodę podczas przeglądania strony www. Korzystając ze strony, wyrażasz zgodę na używanie cookies zgodnie z aktualnymi ustawieniami przeglądarki. Co to są ciasteczka?