Slide 2
Ostrzeżenie!!! Jeśli oglądniecie tą prezentację to przestaniecie wierzyć własnym oczom. Zobaczycie tylko wydaje wam się, że widzicie to, co widzicie. Wkroczycie w świat linii, które przecinają się, choć są równoległe, odcinków krótszych i dłuższych, ale równiej długości, albo wcale nie żartuję schodów, które zaczynają się tam, gdzie się kończą. Uff, byle nie zwariować... Czy wyrażasz zgodę, aby przejść do następnego slajdu? Tak Nie
Slide 3
Złudzenie Ebbinghausa Oto złudzenie typu kontrastowego opisane przez Ebbinghausa w 1902 roku. Koło otoczone mniejszymi kołami wydaje się sporo większe niż identyczne koło otoczone kołami większymi od siebie. Podobny efekt można zaobserwować w przypadku kwadratów.
Slide 4
Złudzenie Ficka Linia pionowa i pozioma mają tę sama długość, chociaż nie wydają się równe. Linie wydają się równe, choć pionowa jest o jedną trzecią krótsza niż pozioma. W 1851 roku Fick zauważył, że linie pionowe wydają się nam dłuższe od linii poziomych o tej samej (obiektywnie) długości. Okazuje się, że w niektórych przypadkach różnica w postrzeganej długości dwóch identycznych odcinków może dochodzić nawet do 30 procent! Zaobserwowano, że intensywność zjawiska nieco maleje, jeśli patrzymy tylko jednym okiem.
Slide 5
Złudzenie Jastrowa Spójrzcie na dwa poniższe kontury. Wydaje się niemożliwe, aby były identyczne! Przecież dolny jest najwyraźniej większy?! Jeśli jednak odrysujecie jeden z nich i położycie na drugi, to zobaczycie, że pasują do siebie idealnie! To niezwykle silne złudzenie odkrył Jastrow, około 1890 roku. Jeśli to też przykład złudzenia opartego na kontraście: krótsza linia górnego konturu kontrastuje z dłuższą linią dolnego.
Slide 6
Złudzenie Zöllnera Trochę nietypowe przedstawienie złudzenia Zöllnera. Linie pomiędzy okręgami mogą wydać się pofalowane. Linie równoległe wydają się lekko pochylone nawzajem siebie. Takie wrażenie wywołują różnie pochylone kreski na tych odcinkach.
Slide 7
Złudzenie Poggendorfa Jest to w zasadzie podstawowy element składowy złudzenia Zőllnera. Dwa fragmenty linii widocznej po obu stronach prostokąta są swoim wzajemnym przedłużeniem, choć wydaje się, że są przesunięte względem siebie.
Slide 8
Złudzenie Wundta Linie równoległe zdają się wybrzuszać na środku górnego i rozchodzić na bokach dolnego rysunku. Na tej ilustracji ulegamy złudzeniu wygięcia boków kwadratu do wewnątrz poprzez umieszczenie w tle kilku okręgów.
Slide 9
Złudzenie Ponza Zwane jest także czasem złudzeniem torów kolejowych, a opublikował je włoski psycholog Mario Ponzo w 1913 roku. Górny odcinek, bliżej wierzchołka, wydaje nam się dłuższy. I w tym przypadku nie mam jednego, całkowicie przekonującego wyjaśnienia iluzji. Niewątpliwie rozwiązanie zagadki powinno mieć coś wspólnego z odczuciem perspektywy.
Slide 10
Złudzenie Müllera - Lyera Który odcinek jest dłuższy? Trudno uwierzyć, że są identyczne! Iluzję tę opublikował Franz Müller Lyer w 1889 roku. Szybko zaproponowano kilka (niestety nieprzekonujących) wyjaśnień efektu.
Slide 11
Nie istniejące obiekty Czy można zobaczyć coś co nie istnieje? Jasne! I to nie tylko zobaczyć można to również narysować. Najsłynniejszym przykładem jest niemożliwy trójkąt Rogera Penrosea. W zależności od spojrzenia na ilustrację (góra lub dół) dostrzeżemy, że raz drzwi otwarte są na zewnątrz, a raz do środka Jedna z niesamowitych brył autorstwa Oscara Reuterswarda
Slide 12
Popatrz na początek i koniec przedstawionych strzałek i oceń ile ich jest.
Slide 13
Nie istniejące kontury Powyżej: przykład wyraźnych czarnych konturów widocznych na czarnym tle! Złudzenie to wymyślił włoski psycholog Gaetano Kanizsa.
Slide 14
Schody Schrödera
Slide 15
Po chwili intensywnego wpatrywania się w powyższy rysunek widać sześć sześcianów ustawionych w piramidę. Czy, aby na pewno? A może to jest siedem sześcianów?
Slide 16
Złudzenie Münstenberga Linie oddzielające poszczególne pionowe rzędy tej ciekawej mozaiki wydają się pokrzywione. Są jednak proste, a nawet wzajemnie równoległe. Złudzenie pochodzi z XIX wieku. Czy uwierzysz, że liny na prawej ilustracji wiszą pionowo, są proste i równoległe wobec siebie? Efekt ich odgięcia powodują czarne elementy umieszczone na linach.
Slide 17
Dwa w jednym Oto obiekty nie jedno znaczne. Możemy wprawdzie z łatwością przestawiać się miedzy dwiema wersjami obrazka, ale nie możemy zobaczyć obu naraz.
Slide 21
Kielich Rubina Bardzo ważną umiejętnością jest wyodrębnienie obiektu z tła. Jest to zwykle tym łatwiejsze, im wyraźniejsze są granice obiektu. Jednak podział na tło i obiekt nie zawsze jest rzeczą prostą. Popatrzcie na kielich Rubina. Zarówno profile twarzy, jak i kielich ze środka rysunku z równą natarczywością domagają się naszej uwagi.
Slide 22
Trójwymiarowe: Patrząc na ilustracje po raz pierwszy można stwierdzić, że postać w głębi jest większa od postaci znajdującej się bliżej oglądającego. W rzeczywistości są one sobie równe. Przy ocenie wielkości zrobiliśmy błąd, ponieważ wzięliśmy pod uwagę perspektywę i tło ilustracji. Pokój Amesa o dziwnym kształcie i kątach stwarza perspektywę, co w zwykłym pokoju. W rezultacie powstaje błędne wrażenie, że dzieci są w tej samej odległości od osoby patrzącej. Mózg nie poprawia wzrostu dziewczynki, zatem postrzegamy ją jako niższą od chłopca.
Slide 23
Dziwne napisy Napis stworzony przez amerykańskiego artystę. Po obróceniu o 180 stopni przedstawia on to samo, co przed obrotem. TrueFalse - praca jest przykładem na to, jak artysta zręcznie umieszczał w jednym słowie drugie o przeciwnym znaczeniu.
Slide 26
Ruszające się obrazki
Slide 29
Wpatruj się w środek przedstawionej ilustracji i oddalaj po czym przybliżaj wzrok. Okręgi będą wydawały się obracać. Na pierwszy rzut oka wydaje się, że na ilustracji przedstawiona jest spirala. W rzeczywistości jest to tylko zbiór okręgów o różnych promieniach.
Slide 30
Wpatruj się w czarną kropkę na środku ilustracji przez około 30 sek. Po chwili szare pole wokół kropki zacznie zanikać, aż do momentu, w którym będzie kompletnie niewidoczne. Wariacja ilustracji znajdującej się wcześniej. Poświata znika do granicy poprzecinanej obręczy.
Slide 31
Inne: Grafika autorstwa Sandro del Prete pt. Columns. Patrząc na górę ilustracji widzimy dwie kwadratowe kolumny, patrząc na dół, trzy okrągłe. Czy uwierzysz, że odcinek AB jest równy, co do długości odcinkowi BC?
Slide 32
Ile tu jest kolorów? Są tylko trzy: biały, różowy i zielony. Dlaczego więc widać więcej? To efekt kontrastu: ciemniejsze kolory zestawione razem wydają się intensywniejsze. Czy uwierzysz, że szary poziomy pasek jest w rzeczywistości jednolicie szary, a efekt zmiany jego barwy powoduje kontrast z tłem. Na ilustracji widzimy tzw. Siatkę Hermana. Na przecięciu szarych linii można dostrzec szare - czarne plamy, których w rzeczywistości nie ma.
Slide 33
5
Slide 34
Powrót
Slide 35
Powrót
Slide 36
Powrót
Slide 37
Powrót
Slide 38
Powrót
Slide 39
Powrót
Slide 40
Powrót
Slide 41
Powrót
Slide 42
Powrót
Slide 43
Powrót
Slide 44
Powrót
Slide 45
Powrót
Slide 46
Powrót
Slide 47
Powrót
Slide 48
Powrót
Slide 49
Powrót
Slide 50
Powrót
Slide 51
Powrót
Slide 52
Powrót
Slide 53
Powrót
Slide 54
Powrót
Slide 55
Powrót
Slide 56
Powrót
Slide 57
Powrót
Slide 58
Powrót
Nie znalazłeść potrzebnej prezentacji multimedialnej? Wypełnij formularz a my zrobimy to za Ciebie i poinformujemy mailowo. Wszystko w mniej niż 24 godziny!