Slide 1
Paulina Stanik Biologia z chemią III rok
Slide 2
Wstęp Czym zajmuje się bioindykacja? Trochę historii Definicje bioindykacji Bioindykator, rodzaje bioindykatorów Metody bioindykacyjne Porosty Rośliny jako organizmy wskaźnikowe Rośliny niższe Rośliny wyższe Podsumowanie Bibliografia
Slide 3
Jedna z najstarszych metod oceny stanu środowiska przyrodniczego, tzw. monitoring biologiczny.
Slide 4
XVIII wiek Karol Linneusz zaprojektował roślinny zegar słoneczny Alphonse de Candolle odkrył powiązania pomiędzy roślinami i czynnikami klimatycznymi XVIIIXIX wiek William Smith wykorzystał szczątki roślin i zwierząt w geologii jako skamieniałości przewodnie do określania wieku skał W. Nylander i S. Arnold niezależnie prowadzili badania nad wrażliwością porostów i mchów na zanieczyszczenia powietrza
Slide 5
XX wiek 1968 Vageningen - Pierwszy Europejski Kongres dotyczący wpływu zanieczyszczeń powietrza na rośliny i zwierzęta (metoda transplantacyjna porostów i mszaków). od roku 1986 określenie wpływu zanieczyszczeń powietrza, wody i gleby na organizmy stało się przedmiotem badań na całym świecie.
Slide 6
Pierwsza definicja: Zespoły i ich warunki egzystencji korespondują do ich życiowej kondycji. (Möbius 1987) Pierwsza definicja w Polsce: Bioindykacja to metoda za pomocą której, dzięki stosowanym żywym organizmom, na różnych poziomach ich organizacji, określa się kierunek i stopień nasilenia zmian w środowisku ich życia. (prof. M. Górny)
Slide 7
Bioindykacja to określenie stanów środowiska lub natężeń czynników środowiskowych przy pomocy odpowiednio wyskalowanych bioindykatorów. (Smajda 1994) Bioindykacja jest to proces, w którym na podstawie ilościowych i jakościowych zmian jednego obiektu indykatora, określa się stan innego obiektu lub całego systemu ekologicznego , włączając substancje i oddziaływania antopogeniczne. (Henryk Zimny 2006)
Slide 8
Jest to organizm o specyficznych właściwościach informacyjnych, które uzewnętrzniają się przy pomocy charakterystycznych symptomów, określając stan czynnika środowiska przyrodniczego o ściśle określonym, mieszczącym się w wąskim przedziale, natężeniu lub o odpowiedniej wartości progowej.
Slide 9
w występowaniu chemiczne w rozmieszczeniu fizjologiczne w morfologii biochemiczne cytologiczne
Slide 10
Są pospolite i łatwo dostępne dla obserwatora Proste do identyfikacji i hodowli Mają długi cykl życiowy
Slide 11
Mają wąskie i określone strefy tolerancji w stosunku do badanego czynnika Prawo tolerancji zarówno niedobór, jak i nadmiar różnych czynników wpływają limitująco na rozwój organizmu. Możliwość bytowania organizmów określają dwie wartości, tzw. ekstrema działającego czynnika: minimum i maksimum. Organizmy wskaźnikowe są STENOBIONTAMI
Slide 12
W zetknięciu z substancjami toksycznymi reagują w charakterystyczny, łatwy do analizy sposób Umożliwiają ocenę zanieczyszczenia środowiska w krótkim przedziale czasu. Powinny być specyficznie wrażliwe na jeden czynnik środowiska. Są dokładnie poznane pod względem systematycznym, morfologicznym, anatomicznym i fizjologicznym;
Slide 13
bioindykatory właściwe (sensitive indicator), tzw. bioindykatory reagujące akumulatory (accumalitive indicator), tzw. wskaźniki akumulacyjne biomarkery skale gatunkowe skale krajobrazowe
Slide 14
gatunki wskaźnikowe gatunki monitorujące gatunki testowe
Slide 15
Bioindykator jakościowy Bioindykator ilościowy poziom ich dzięki nim możemy określić obecność danego czynnika o określonej jakości w środowisku. liczebności pozwala określić jakościowo i ilościowo dany czynnik środowiskowy. Bioindykator mieszany pozwalają wyróżnić dane zjawisko w ekosystemie oraz określić jego natężenie
Slide 16
panarealne strefowe regionalne lokalne (cały obszar swego występowania) (określonej strefie klimatycznej) (określonym regionie geobotanicznym) (określone obszary)
Slide 17
Autoindykatory Litoindykatory Pedoindykatory Chemoindykatory Hydroindykatory Sanoindykatory Termoindykatory Indykatory krajobrazu
Slide 18
Bardziej wystawione na zanieczyszczenia powietrza, bardziej czułe na imisję Pełna odsłona i ekspozycja liści na zanieczyszczenia Są stale przytwierdzone do podłoża Łatwe do uprawy Łatwe do badań wpływu zanieczyszczeń
Slide 19
na podstawie obecności i nieobecności gatunków wskaźnikowych można stworzyć skale umożliwiające określenie poziom zanieczyszczenia danego obszaru. system saprobów skala porostowa
Slide 20
opiera się na obserwacji zmian morfologicznych organów roślin, np. badając zmiany morfologiczne igliwia czy pędów i gałęzi roślin iglastych.
Slide 21
opiera się na tym, że niektóre organizmy, zwane akumulatorami posiadają zdolność dobrego pochłaniania i kumulowania substancji toksycznych, np. metali ciężkich czy związków siarki. np. porowata kora drzew, mchy, igliwie sosen
Slide 22
Laboratoryjna: polega na wykorzystaniu organizmów testowych w laboratoriach w badaniach wpływu zanieczyszczeń na te organizmy, poprzez określenie średniego czasu śmiertelności, jak również stężenie dające pełną śmiertelność oraz czas jej wystąpienia. W metodzie oznaczamy aktywność biologiczną zanieczyszczenia, a nie jego skład chemiczny. Terenowa: transplantacja porostów i mchów
Slide 24
Małą tolerancję na zanieczyszczenia. Brak tkanki okrywowej. Pobierają wodę bezpośrednio z odpadów atmosferycznych całą plechą skuteczne pochłanianie zanieczyszczeń. Wymiana gazowa całą powierzchnią ciała. Mała zdolność przystosowania do zmieniających się warunków środowiska. Toksyny i związki szkodliwe mogą być magazynowane w plechach porostów brak systemu wydalania.
Slide 25
1. Morfologia plech 2. Stan fizjologiczny plech 3. Właściwości podłoża 4. Warunki klimatyczne i ukształtowanie terenu 5. Rodzaj i stężenie zanieczyszczeń 6. Odległość od źródła emisji
Slide 26
Porosty są wrażliwe na dwutlenek siarki i jego pochodne, które łatwo mogą wnikać do wnętrza komórek, a wzrost zawartości SO2 w powietrzu prowadzi do akumulacji siarki w porostach. Porosty wrażliwe są również na tlenki azotu oraz tworzone przez nie i SO2 kwasy.
Slide 27
ograniczenie wzrostu plechy obumieranie części plechy zamierania poszczególnych osobników zaniku występowania danego gatunku na określonym obszarze
Slide 28
Bierna oparta na spisach florystycznych oraz tworzeniu na ich podstawie map porostowych; ocena rodzaju i emisji skażenia. Aktywna polegająca na przenoszeniu gatunków porostów z miejsc nieskażonych na tereny badane, tzw. metoda transplantacyjna porostów.
Slide 29
Polega na wycinaniu krążków kory z określonym gatunkiem porostu (najczęściej Hypogymnia physodes) physodes a następnie przymocowuje je bezpośrednio do drzewa lub specjalnej, porowatej deski
Slide 30
I strefa: bezwzględna pustynia porostowa brak porostów, występowanie nielicznych glonów Desmicoccus sp. Stężenie SO2: 170 µgm2
Slide 31
II strefa: względna pustynia porostowa najodporniejsze gatunki porostów proszkowatych i skorupiastych, np. Lecanora conizaeoides, Physcia adscendens Stężenie SO2: 170-100 µgm2 Misecznica proszkowata Lecanora conizaeoides Obrost wzniesiony Physcia
Slide 32
III strefa: wewnętrzna strefa osłabionej wegetacji pojawianie się porostów listkowatych, np. Hypogymnia physodes, Xanthoria parietina 2 Stężenie SO : 100-70 µgm 2 Pustułka pęcherzykowata Hypogymnia physodes Złotorost ścienny Xanthoria parietina
Slide 33
IV strefa: środkowa strefa osłabionej wegetacji występowanie porostów listkowatych i pojawianie się gatunków krzaczastych; np. Evernia prunastri, Physcia stellaris. Mąkla tarniowa Evernia prunastri Stężenie SO2: 70-50µgm2. Obrost gwiazdkowaty Physcia stellaris
Slide 34
V strefa: zewnętrzna strefa osłabionej wegetacji gatunki porostów listkowatych, zajmujących znaczną powierzchnię pnia oraz liczne gatunki porostów krzaczastych; np. Pseudevernia furfuracea, Flavoparmelia caperata . Stężenie SO2: 50-40 µgm2. Mąklik otrębiasty Pseudevernia furfuracea Żółtlica chropowata Flavoparmelia caperata
Slide 35
VI strefa: wewnętrzna strefa normalnej wegetacji duża bioróżnorodność flory porostowej, pnie i gałęzie drzew obficie pokryte licznymi gatunkami porostów o wszystkich typach budowy plechy; np. Usnea florida, Ramalina fraxinea. Odnożyca jesionowa 2. Stężenie SO : 40-30µgm 2 Ramalina fraxinea Brodaczka nadobna Usnea florida
Slide 36
VII strefa: typowa strefa normalnej wegetacji bardzo liczna i zróżnicowana flora porostowa, obecność porostów o dużych plechach (dynamika przyrostu plechy); np. Lobaria pulmonaria, Nephroma resupinatum Stężenie SO2: poniżej 30µgm2. Granicznik płucnik Lobaria pulmonaria Pawężniczka odwrócona Nephroma resupinatum
Slide 39
szeroki zasięg geograficzny, pospolite na różnych siedliskach; ich budowa ułatwia dostęp zanieczyszczeń chemicznych występujących w powietrzu; pobierają związki chemiczne przede wszystkim poprzez prostą wymianę jonów; mchy sfagnowe mają pietrową budowę (roczne przyrosty w formie segmentów); stężenie związków chemicznych w biomasie mchów wielkość depozycji pobranej z powietrza;
Slide 40
D C PW gdzie: D - depozycja (opad) danego pierwiastka [µgm2rok] C - stężenie danego pierwiastka w danym gatunku mchu [µgm2rok] P - produkcja danego gatunku mchu [gm2rok] W - współczynnik retencji (zdolność pobierania danego pierwiastka przez badany gatunek) Gajnik lśniący Hylocomium splendens Rokiet cyprysowaty Hypnum cupressiforme Rokietnik pospolity Pleurozium schreberi
Slide 41
Sphagnum recurvum Torfowiec odgięty
Slide 42
wpływ chemizmu podłoża przemieszczanie składników ze starszych części roślin do młodszych wymywanie składników z wyżej rosnących warstw roślinności wysokość nad poziomem morza
Slide 43
Wykorzystanie żywych organizmów wykorzystanie mchów w ich naturalnym środowisku metoda transplantacji Wykorzystanie wysuszonych pakiecików Metoda woreczkowa
Slide 44
warunków oświetlenia; wilgotności terenu; stopnia zakwaszenia podłoża; typu siedliska; warunków barometrycznych (Funaria hygrometrica) Skrętek wilgociomierczy
Slide 46
Nieobecność w danym obszarze Zmiany w procesach fizjologicznych Zmiany morfologiczne w obrębie aparatu asymilacyjnego Zmiany morfologiczne pozostałych organów roślinnych
Slide 47
Nekrozy Chlorozy Przyspieszon a defoliacja i wymiana igliwia
Slide 48
stężenie zanieczyszczeń oraz ich rodzaj czas ekspozycji gatunek rośliny wiek roślin zasobność środowiska w związki biogenne (kondycja roślin) czynniki środowiskowe: światło, temperatura, wilgotność powietrza, typ gleby
Slide 49
Uszkodzenia ostre wyraźnie widoczne, początkowo na liściach ciemnozielone plamy, które mogą bieleć lub brunatnieć, zmieniając się w nekrozy, na wierzchołkach liści, brzegach i między nerwami. Uszkodzenia chroniczne najczęściej między nerwami w postaci jaśniejszych przebarwień, mają formę chloroz, mogą zmienić się w martwice (nekrozy). Uszkodzenia niewidoczne mogą prowadzić do zmniejszenia dynamiki procesów asymilacji, mniejszych przyrostów masy.
Slide 50
Uszkodzenia chroniczne: chlorozy na starszych liściach, nekrozy na młodych; chloroza pojawia się pasmowo, następnie pojawiają się plamki nekroz Uszkodzenia ostre: Jednoliścienne zmiana barwy liści na żółtawą, nekrozy na wierzchołkach i brzegach liści. Dwuliścienne siateczki plamek między nerwami lub na brzegach liści, zmiana barwy liści na szarozieloną i białą. Liście stosunkowo szybko obumierają. Duże natężenie nekroz u drzew iglastych zmiana barwy igliwia na brunatną od wierzchołka do podstawy.
Slide 51
Uszkodzenia chroniczne: chlorozy w formie plamek o jasnozielonym zabarwieniu, później jasnożółtym. Uszkodzenia ostre: Jednoliścienne żółte i brązowe nekrozy na wierzchołkach liści, przesuwają się ku podstawie. Dwuliścienne nieregularne plamy chlorozy, przechodzące w nekrozę, zamiany zachodzą od wierzchołków (zarówno liściaste jak i iglaste)
Slide 52
Dobre biowskaźniki związków fluoru: Jodła pospolita Abies alba Klon pospolity Acer platanoides Dąb szypułkowy Quercus robur Berberys zwyczajny Berberis vulgaris Daglezja zielona Pseudotsuga
Slide 53
Uszkodzenia chroniczne różnorodne plamy oraz wczesna defoliacja. Uszkodzenia ostre: Jednoliścienne obustronne, żółtobiałe nekrozy Dwuliścienne obustronne nekrozy o błyszczącej powierzchni, po czym plamki o barwie czerwonej i brązowej. U drzew iglastych chlorotyczne jasne plamy i brunatniejące, rozprzestrzeniające się na całej powierzchni igieł.
Slide 54
Najlepszym boindykatorem ozonu jest tytoń (Nicotiana tabacum) białe lub brązowe plamy, świadczące o stężeniu ozonu.
Slide 55
Zarówno u roślin dwuliściennych jak i jednoliściennych występują odbarwienia chlorofilu lub nekrozy brzegów liści oraz części międzyżyłkowych, obejmujące obie strony liścia.
Slide 56
Rośliny najbardziej wrażliwe Stężenie nie przekraczające 0,04mgm3 Lucerna siewna Medicago sativa Bób Vicia faba Koniczyna Trifolium Świerk Picea Jodła Abies Daglezja Pseudotsunga
Slide 57
Gatunki wrażliwe Stężenie nie przekraczające 0,08mgm3 Jęczmień zwyczajny Hordeum vulgare Sosna zwyczajna Pinus sylvestris Fuksja Fuchsia sp. Modrzew Larix sp. Pelargonia Pelargonium sp. Buk pospolity Fagus sylvatica
Slide 58
Rośliny mniej wrażliwe Dopuszczalne stężenie SO2 0,12mgm3 Marchew zwyczajna Daucus carota Topola Populus sp. Cis pospolity Taxus baccata Dąb szypułkowy Quercus robur
Slide 59
CO2 SOx NOx H2O H2O H2CO3 H2SO4 H2SO3 HNO3 HNO2 KWAŚNE DESZCZE Reakcje roślin na kwaśne deszcze: Chlorozy i nekrozy w wyniku jednorazowych opadów, przy częstych opadach zżółknięcie i opadania liści i igliwia. Deformacja młodych pędów Objawy chorobowe i redukcja przyrostu masy korzeni Wymieranie roślinności
Slide 61
Kora odpowiednia do badań musi być: gruba Metoda wykorzystuje pomiary szorstka pH kory odpowiednich gatunków porowata drzew oraz porównuje z naturalnym jej odczynem. Sosna Dąb
Slide 62
Mchy Rokietnik pospolity Pleurozium schreberi Na podstawie materiału mchów z całego kraju zmierzono stężenia metali ciężkich w Polsce takich jak: Cd, N, V, Cr, Pb, Cu, Zn, Fe. Powstały cztery strefy skażenia metalami ciężkimi.
Slide 63
Rośliny wyższe Akumulacja metali ciężkich: w aparatach asymilacyjnych (liście, igliwie) gałęziach korze korzeniach Wiele badań przeprowadzonych na terenie miast, wykazały znaczny udział imisji Zn, Zn Pb, Pb Cr i Cu, Cu które akumulowane są w znacznej ilości i zakłócają podstawowe procesy fizjologiczne roślin.
Slide 64
Rośliny wyższe Wykorzystywane gatunki drzew: Buk pospolity Fagus sylvatica Jodła pospolita Abies alba Świerk pospolity Picea abies Dąb szypułkowy Quercus robur
Slide 65
Rośliny wyższe Inne wykorzystywane rośliny: Rośliny trawników miejskich Mniszek lekarski Taraxacum officinale
Slide 67
Falińska K. 2004. Ekologia roślin. Wydawnictwo Naukowe PWN, Warszawa. Str. 448-453. Grodziński W. 1981. Biowskaźniki w służbie ochrony środowiska. Wszechświat 7-8: str. 161-166. Halaburda N. Bioindykacja. Nowe spojrzenie na środowisko [online]. 2010. Ostatnia aktualizacja 27.04.2011. [dostęp: 15.05.2011], Dostępny w Internecie: http:www.bioindykacja.pl. Migaszewski Z. M., Gałuszka A. 2007. Podstawy geochemii środowiska. Wydawnictwo Naukowo Techniczne, Warszawa. Str. 421-458. Zimny H. 2006. Ekologiczna ocena stanu środowiska. Bioindykacja i biomonitoring. Agencja Reklamowo Wydawnicza A. Grzegorczyk, Warszawa.
Nie znalazłeść potrzebnej prezentacji multimedialnej? Wypełnij formularz a my zrobimy to za Ciebie i poinformujemy mailowo. Wszystko w mniej niż 24 godziny!