Biologia

Fizyka w medycynie

5 lat temu

Zobacz slidy

Fizyka w medycynie - Slide 1
Fizyka w medycynie - Slide 2
Fizyka w medycynie - Slide 3
Fizyka w medycynie - Slide 4
Fizyka w medycynie - Slide 5
Fizyka w medycynie - Slide 6
Fizyka w medycynie - Slide 7
Fizyka w medycynie - Slide 8
Fizyka w medycynie - Slide 9
Fizyka w medycynie - Slide 10
Fizyka w medycynie - Slide 11
Fizyka w medycynie - Slide 12
Fizyka w medycynie - Slide 13
Fizyka w medycynie - Slide 14
Fizyka w medycynie - Slide 15
Fizyka w medycynie - Slide 16
Fizyka w medycynie - Slide 17
Fizyka w medycynie - Slide 18
Fizyka w medycynie - Slide 19
Fizyka w medycynie - Slide 20
Fizyka w medycynie - Slide 21
Fizyka w medycynie - Slide 22
Fizyka w medycynie - Slide 23
Fizyka w medycynie - Slide 24

Treść prezentacji

Slide 1

FIZYKA W MEDYCYNIE OPRACOWAŁA: ELŻBIETA GAWRON

Slide 2

Elektromiografia (EMG)

Slide 3

Elektromiografię w codziennej pracy wykorzystują lekarze ortopedzi, reumatolodzy, rehabilitanci. Najważniejszym jednak polem zastosowań tej metody diagnostycznej są choroby nerwowo-mięśniowe. EMG pozwala zbadać stan unerwienia mięśnia, potrafi wychwycić procesy związane z odbudowywaniem uszkodzonego unerwienia, wskazuje na stopień uszkodzenia mięśnia i nerwu.

Slide 4

Mięsień kurczy się, gdy jest drażniony elektrycznie, a podczas skurczu powstaje w nim prąd. Ten fakt jest podstawą badań elektromiograficznych (w skrócie EMG), czyli rejestracji czynności elektrycznej mięśni. Czynność ta związana jest ze zdolnością przenikania jonów sodu i potasu przez błonę komórki. Wskutek nierównomiernego rozmieszczenia jonów sodu i potasu w obrębie komórki mięśniowej - dochodzi do polaryzacji ładunku elektrycznego wnętrza komórki w stosunku do błony komórkowej. Potencjał polaryzacji, wynoszący w spoczynku około 80 mV, ulega zmianom w zależności od stanu Opracowano na podstawie artykułu Klary Szatkiewicz Pod prądem, Wiedza i Życie, nr 81998 czynnościowego mięśnia.

Slide 5

Rezonans Rezonans magnetyczny magnetyczny Aparat do wykonywania badania metodą

Slide 6

Obrazowanie za pomocą rezonansu magnetycznego polega na umieszczeniu pacjenta w komorze aparatu, w stałym polu magnetycznym o wysokiej energii. Silne magnesy wytwarzają jednorodne pole, które powoduje, że momenty magnetyczne porządkują się w kierunku pola. Dodatkowe cewki wytwarzają krótkie impulsy promieniowania elektromagnetycznego o częstotliwości radiowej. Jądra wodoru absorbują energię tych fal radiowych, zmieniają swój stan, a potem oddają energię emitując fale o tej samej częstości (zachodzi więc zjawisko rezonansu). Sygnały te odbierane są przez aparat i można precyzyjnie zlokalizować miejsce, w którym zachodzi emisja. Szybkość emisji zależy od typu cząsteczek i jest różna dla tłuszczów, białek, wody i innych bogatych w wodór związków, co pozwala rozróżnić typy i gęstości tkanek. Odebranym sygnałom komputer przypisuje odpowiednią skalę szarości i na ekranie monitora telewizyjnego lub na zdjęciach widać obszary o różnym stopniu zaczernienia.

Slide 7

Komputer na żądanie operatora może dokonać też obliczeń w taki sposób, aby przedstawić obraz anatomiczny w dowolnie wybranej płaszczyźnie. Obrazy badanych struktur u poszczególnych pacjentów zapamiętywane są w pamięci stałej komputera, tj. na dyskach optycznych. Obrazy te są także przez specjalną kamerę naświetlane na zwykłej folii rentgenowskiej. Aby polepszyć obraz stosuje się środki kontrastowe różniące się pomiędzy sobą właściwościami. Obraz ludzkiej głowy wykonany za pomocą rezonansu magnetycznego.

Slide 8

Tomografia Tomografia komputerowa

Slide 9

Zdjęcie tomograficzne Tomografię komputerową stosuje się w przypadku znacznych różnic w gęstości tkanek, nadaje się więc do diagnozowania złamań, Zdjęcie tomograficzne głowy na poziomie oczodołów zakrzepów i kamieni

Slide 10

Tomografia polega na wykonywaniu kolejnych zdjęć rentgenowskich sterowanych komputerem badanego narządu w różnych płaszczyznach i pod różnym kątem. Pozwala to uzyskać warstwowy obraz, przedstawiający bardzo dokładnie nawet niewielkie zmiany chorobowe. Tomograf komputerowy składa się ze stołu, na którym leży pacjent, gantry, w której znajduje się lampa promieniowania rentgenowskiego wraz z detektorami oraz z komputerowej konsoli, na której programuje się i ogląda badania. Skaner tomografu komputerowego obraca się wokół leżącego pacjenta, wykonując co kilka stopni liczne pomiary. Na podstawie pomiarów gęstości osłabiania promieniowania komputer tworzy obrazy poprzecznych przekrojów ciała pacjenta uwidaczniające z dużą dokładnością tkanki organizmu i strukturę narządów. Poddane dalszej obróbce komputerowej przekroje poprzeczne mogą być źródłem obrazów trójwymiarowych. Opracowano na podstawie materiałów Państwowej Agencji Atomistyki Promieniowanie i medycyna i strony internetowej

Slide 11

Ultrasonografia Ultrasonografia

Slide 12

Na granicy dwóch ośrodków fizycznych, np. powietrza i wody, część fali dźwiękowej odbija się, a cześć przechodzi dalej. Jeśli fala przechodzi przez granicę dwóch ośrodków o różnych prędkościach rozchodzenia się, następuje załamanie czyli zmiana kierunku rozchodzenia się fali. Na zjawisku odbicia i załamania fali dźwiękowej opiera się jedna z najczęściej stosowanych metod diagnostycznych - ultrasonografia zwana w skrócie USG. Badanie ultrasonograficzne jest bardzo wygodne dla chorego, zwykle nie wymaga wcześniejszych przygotowań, nie boli i nie uszkadza tkanek. Wyemitowana fala, przechodząc przez ciało człowieka, wprawia w drgania napotkane tkanki. Gdy trafia na przeszkodę, na przykład granicę między różnymi strukturami anatomicznymi lub niejednorodności tkanki, takie jak zwapnienie, pęcherzyki gazów czy ciała obce, jej część zostaje odbita i wraca do źródła, część zaś podąża dalej aż trafi na kolejną przeszkodę.

Slide 13

Różnica gęstości ośrodków powoduje drastyczną zmianę kierunków rozchodzenia się fali. Właśnie dlatego przed badaniem lekarz nakłada na skórę specjalny żel, eliminując w ten sposób niepotrzebną ze względów diagnostycznych granicę między ośrodkami. Fala wnika prawie bez przeszkód w głąb ciała pacjenta. Generator ultradźwięków, będący drgającym kryształem, może równocześnie odbierać falę odbitą od granicy tkanek. Przekazuje ją do przetwornika, który rysuje obraz narządów na ekranie oscyloskopu. Sygnał odbity widać w postaci rozjaśnienia na monitorze. Powracająca z głębi ciała fala dźwiękowa, w zależności od natężenia, przedstawiana jest w postaci punktów świetlnych o różnym stopniu szarości. Na płaskim ekranie, dzięki ruchomej głowicy aparatu, którą przesuwa lekarz po powierzchni ciała chorego, uzyskuje się obraz różnych przekrojów badanej tkanki, a w efekcie przestrzenny obraz narządu. Za pomocą ultrasonografu można obejrzeć niemal każdy kawałek ludzkiego ciała, a doświadczony lekarz potrafi na tej podstawie wykryć wiele schorzeń.

Slide 14

Badania USG dają możliwość wczesnego wykrycia raka trzustki lub wątroby. Na zdjęciu obok przerzuty nowotworowe (w czerwonej ramce) wyraźnie odróżniają się od zdrowej tkanki wątrobowej. Opracowano na podstawie artykułu Klary Szatkiewicz, Złapać echo z czasopisma Wiedza i Życie nr 21997

Slide 15

Echokardiografia Echokardiografia Bardzo często wykonuje się ostatnio echokardiografię, czyli badanie serca i dużych naczyń krwionośnych. To badanie pozwala obejrzeć poszczególne struktury serca w czasie normalnej pracy. Można więc wykryć w ten sposób wady serca i ocenić, jakie wywołują one skutki fizjologiczne. Na przykład zwężenie i niedomy-kalność zastawek z równoczesną oceną, jak znacznie wada ta zaburza normalny przepływ krwi. Na zdjęciu ultrasonograficznym widać również, tętniaki czy rozwarstwienia aorty. Badanie serca pozwala lekarzom na bieżąco śledzić stan zdrowia pacjenta, można je bowiem powtarzać bez żadnego ryzyka nawet w ostrej fazie choroby.

Slide 16

Zastosowanie Zastosowanie lasera lasera w w medycynie medycynie Laserem można usuwać tatuaż lub zabarwienia skóry w miejscach różniących się współczynnikiem absorpcji od miejsc sąsiednich.

Slide 17

Na zdjęciu obok chirurg wprowadza wiązkę lasera argonowego przez wąski przewód do ucha pacjenta w celu usunięcia nowotworu powstałego pomiędzy uchem, a mózgiem.

Slide 18

Terapeutyczne i diagnostyczne zastosowania laserów podaje tabela. Specjalność Zastosowanie terapia diagnostyka Okulistyka koagulacja siatkówki, mikrochirurgia badanie zaćmy Onkologia niszczenie tkanki nowotworowej holografia ultradźwiękowa Chirurgia cięcie tkanek miękkich oświetlanie narządów od wewnątrz i twardych (endoskopia) Stomatologia usuwanie próchnicy, plombowanie Dermatologia usuwanie tatuażu, procesy rozrostowe

Slide 19

Szczególne znaczenie mają w biomedycynie lasery molekularne. Promieniowanie lasera molekularnego przypada na część podczerwoną widma, która jest silnie pochłaniana przez tkankę. Ostra wiązka laserowa stosowana jako skalpel chirurgiczny umożliwia przeprowadzanie czystych cięć w tkankach, a przez przypalanie rany zmniejsza krwawienie. Takich bezkrwawych zabiegów można dokonywać na narządach silnie, ukrwionych jak wątroba, płuca czy mózg.

Slide 20

W stomatologii stosuje się też od lat lasery. Najczęściej do fizykoterapii przy chorobach dziąseł (światło o odpowiedniej barwie korzystnie wpływa na tkanki), ale również zamiast wiertła. Do tego celu oczywiście potrzeba urządzeń dużej mocy. Laser neodymowy odparowuje część tkanek, zaś pozostałe stapia, pozostawiając szklistą powierzchnię. Innym zastosowaniem lasera jest wybielanie zębów - przebarwienia bieleją pod wpływem silnego światła jak kości leżące na pustyni. Duże zastosowanie wiązki laserowej jest w okulistyce, a mianowicie w mikrochirurgii ocznej do łączenia (koagulacji) odklejonej siatkówki z naczyniówką w oku ludzkim. Urządzenie służące do tego zabiegu zwie się koagulatorem laserowym. Opracowano na podstawie Encyklopedii Fizyki Współczesnej

Slide 21

Zdjęcia rentgenowskie wykonuje się po złamaniach kości i do prześwietlenia klatki piersiowej wykazujące zmiany w płucach.

Slide 22

Promieniowanie rentgenowskie przechodząc przez substancję ulega rozproszeniu oraz przede wszystkim pochłanianiu czyli absorpcji. Tę własność wykorzystano w medycynie do prześwietleń różnych części ciała. Promieniowanie rentgenowskie kieruje się na ciało pacjenta, a następnie pada na kliszę fotograficzną. Pod wpływem promieniowania rentgenowskiego następuje reakcja materiału kliszy. Po wywołaniu otrzymujemy obraz. Na przykład podczas prześwietlania ciała ludzkiego rzeczywista absorpcja w kościach, składających się głównie z fosforu i wapnia przewyższa około 150-krotnie absorpcję w miękkich tkankach ciała, gdzie głównie pochłania woda. Dlatego podczas prześwietlenia wyraźnie wyróżnia się cień pochodzący od kości.

Slide 23

W badaniach radiologicznych stosuje się również związki kontrastowe czyli substancje, które silnie pochłaniają promieniowanie rentgenowskie. Wprowadzenie ich na przykład do układu naczyniowego pozwala na uwidocznienie przebiegu i zarysu tętnic oraz żył. Ta dziedzina nosi Zdjęcie tętnic mózgowych wykonane tą techniką.

Slide 24

Opracowano na podstawie materiałów, których tytuły zamieszczone są na stronach powyżej.

Dane:
  • Liczba slajdów: 24
  • Rozmiar: 0.30 MB
  • Ilość pobrań: 64
  • Ilość wyświetleń: 4487
Mogą Cię zainteresować
Czegoś brakuje?

Brakuje prezentacji,
której potrzebujesz?

Nie znalazłeść potrzebnej prezentacji multimedialnej? Wypełnij formularz a my zrobimy to za Ciebie i poinformujemy mailowo. Wszystko w mniej niż 24 godziny!

Znajdziemy prezentację
za Ciebie