Slide 1
WYKŁAD 11 ZJAWISKA DYFRAKCJI I INTERFERENCJI ŚWIATŁA; SPÓJNOŚĆ
Slide 2
PLAN WYKŁADU Uwagi wstępne i podstawowe pojęcia Zasada superpozycji Natężenie fali świetlnej w zapisie zespolonym Interferencja fal z dwóch spójnych źródeł punktowych PODSUMOWANIE
Slide 3
Uwagi wstępne i podstawowe pojęcia Obraz geometryczny i obszar dyfrakcji R i R R L R Odstępstwa od modelu promieni, efekty brzegowe
Slide 4
Dyfrakcja Fresnela: R L R R Dyfrakcja Fraunhofera: R L R R Niezbyt duża i wystarczająco duża odległość ekranu od otworu
Slide 5
Warunki na otrzymanie dyfrakcji: monochromatyczność spójność czasowa, stała różnica faz pomiędzy falami przechodzącymi przez ten sam punkt otworu w różnych chwilach czasu spójność przestrzenna stała różnica faz pomiędzy falami przechodzącymi przez różne punkty otworu Spójność różnych źródeł; źródło pierwotne i źródła wtórne Dyfrakcja i interferencja, nakładanie się efektów dyfrakcyjnych i interferencyjnych
Slide 6
Zasada superpozycji 2 1 2 E1 E2 2 2 c t 2 1 2 2 1 2 E1 E2 2 2 2 2 c t c t Jeśli E1 i E2 są rozwiązaniami to także E1E2 jest rozwiązaniem równania falowego. Zasada ta to podstawa teorii zjawisk dyfrakcji i interferencji
Slide 7
Natężenie fali świetlnej w zapisie zespolonym Wektor Poyntinga (natężenie, czyli energia na jednostkę czasu i jednostkę powierzchni): 2 2 k E 2 2 k S 0c E B 0c E 0c E
Slide 8
Natężenie fali świetlnej w zapisie zespolonym Wektor Poyntinga (natężenie, czyli energia na jednostkę czasu i jednostkę powierzchni): 2 2 k E 2 2 k S 0c E B 0c E 0c E Znaczenie średniej w czasie. Dla fal harmonicznych:
Slide 9
Natężenie fali świetlnej w zapisie zespolonym Wektor Poyntinga (natężenie, czyli energia na jednostkę czasu i jednostkę powierzchni): 2 2 k E 2 2 k S 0c E B 0c E 0c E Znaczenie średniej w czasie. Dla fal harmonicznych: Średnia w czasie wartość E2: 2 1 E E E 2
Slide 10
Natężenie fali świetlnej w zapisie zespolonym Wektor Poyntinga (natężenie, czyli energia na jednostkę czasu i jednostkę powierzchni): 2 2 k E 2 2 k S 0c E B 0c E 0c E Znaczenie średniej w czasie. Dla fal harmonicznych: Średnia w czasie wartość E2: 1 2 2 2 E0 cos t E0 2 2 1 E E E 2 E0eit E0e it E02
Slide 11
i kr t Wstawiając: E E0e do wyrażenia na S otrzymamy: 1 2 k 1 2 k S 0c E E 0c E0 E0 2 2
Slide 12
i kr t Wstawiając: E E0e do wyrażenia na S otrzymamy: 1 2 k 1 2 k S 0c E E 0c E0 E0 2 2 albo, korzystając z : k k 0 n n c i E 0 E 0 e i
Slide 13
i kr t Wstawiając: E E0e do wyrażenia na S otrzymamy: 1 2 k 1 2 k S 0c E E 0c E0 E0 2 2 albo, korzystając z : k k 0 n n c mamy : i E 0 E 0 e i 2 1 2 1 S 0cn E 0cn E 0 2 2
Slide 14
Interferencja fal z dwóch spójnych i monochromatycznych źródeł punktowych
Slide 15
Interferencja fal z dwóch spójnych i monochromatycznych źródeł punktowych E 01 E 02 E E1 E 2 exp i kr1 t exp i kr2 t r1 r2
Slide 16
Całkowite uśrednione w czasie natężenie I(P): 1 I P 0cn E1 E2 E1 E2 2
Slide 17
Całkowite uśrednione w czasie natężenie I(P): 1 I P 0cn E1 E2 E1 E2 2 1 1 1 cn E E E E 0cn E1E1 0cn E2E2 0 1 2 2 1 2 2 2
Slide 18
Całkowite uśrednione w czasie natężenie I(P): 1 I P 0cn E1 E2 E1 E2 2 1 1 1 cn E E E E 0cn E1E1 0cn E2E2 0 1 2 2 1 2 2 2 2 2 1 E01 1 E02 0cn 0cn 2 2 2 2 r1 r2 1 E01E02 exp ik r1 r2 exp ik r2 r1 0cn 2 r1r2
Slide 19
Ostatecznie otrzymamy: gdzie: I P I1 I 2 2 I1I 2 cos 2 r1 r2 r1 r2 2 k r1 r2 2 ,
Slide 20
Ostatecznie otrzymamy: gdzie: I P I1 I 2 2 I1I 2 cos 2 r1 r2 r1 r2 2 k r1 r2 2 , Imax I1 I 2 2 I1I 2 r1 r2 m m, m 0,1,2,3... interferencja konstruktywna
Slide 21
Ostatecznie otrzymamy: gdzie: I P I1 I 2 2 I1I 2 cos 2 r1 r2 r1 r2 2 k r1 r2 2 , Imax I1 I 2 2 I1I 2 r1 r2 m interferencja konstruktywna Imin I1 I 2 2 I1I 2 r1 r2 2n 1 2 m, m 0,1,2,3... 1 2n 1 , n 0,1,2,3... 2 interferencja destruktywna
Slide 22
Przypadek jednakowych źródeł: I 2I 0 2I 0 cos 2 2I 0 1 cos 2 4I 0 cos2 zerowe natężenia w ciemnych prążkach
Slide 23
Interferencja konstruktywna: r1 r2 m, gdzie m 0, 1, 2, 3, ... geometryczna definicja hiperboli: miejsce geometryczne punktów, których bezwzględna wartość różnicy odległości od dwóch punktów (ognisk) jest stała
Slide 24
Hiperboloida jasnego prążka dla: r1 r2 m 2a, a m 2 , 1; m 8 m 8 , S1S 2 2c 10
Slide 25
r1 r2 x c 2 y 2 x c 2 y 2 2a
Slide 26
r1 r2 x c 2 y 2 x c 2 y 2 2a x c 2 y 2 4a2 x c 2 y 2 4a x c 2 y 2
Slide 27
r1 r2 x c 2 y 2 x c 2 y 2 2a x c 2 y 2 4a2 x c 2 y 2 4a x c 2 y 2 4cx 4a 2 4a x c 2 y 2
Slide 28
r1 r2 x c 2 y 2 x c 2 y 2 2a x c 2 y 2 4a2 x c 2 y 2 4a x c 2 y 2 4cx 4a 2 4a x c 2 y 2 16 c2 a 2 x 2 16a 2y 2 16a 2 c2 a 2
Slide 29
r1 r2 x c 2 y 2 x c 2 y 2 2a x c 2 y 2 4a2 x c 2 y 2 4a x c 2 y 2 4cx 4a 2 4a x c 2 y 2 16 c2 a 2 x 2 16a 2y 2 16a 2 c2 a 2 definiując: b c2 a2 otrzymamy:
Slide 30
r1 r2 x c 2 y 2 x c 2 y 2 2a x c 2 y 2 4a2 x c 2 y 2 4a x c 2 y 2 4cx 4a 2 4a x c 2 y 2 16 c2 a 2 x 2 16a 2y 2 16a 2 c2 a 2 definiując: b c2 a2 16b 2x 2 16a 2y 2 16a 2b 2 otrzymamy: i dalej: x2 a2 y2 b2 1
Slide 31
y b x2 a 2 1
Slide 32
y b x2 a 2 1 Pomijając jedynkę otrzymamy: y bx a dwie proste na płaszczyźnie, stożek w przestrzeni
Slide 33
y b x2 a 2 1 Pomijając jedynkę otrzymamy: y bx a dwie proste na płaszczyźnie, stożek w przestrzeni Na płaszczyźnie (płaskim ekranie) otrzymamy krzywe stożkowe; dla płaszczyzny równoległej do prostej na której leżą źródła, hiperbole, dla płaszczyzny prostopadłej, okręgi, dla innych elipsy
Slide 34
y b x2 a 2 1 Pomijając jedynkę otrzymamy: y bx a dwie proste na płaszczyźnie, stożek w przestrzeni Na płaszczyźnie (płaskim ekranie) otrzymamy krzywe stożkowe; dla płaszczyzny równoległej do prostej na której leżą źródła, hiperbole, dla płaszczyzny prostopadłej, okręgi, dla innych elipsy liczba hiperbol: mmax 2c
Slide 35
Doświadczenie Younga, obserwacja prążków α kąt określający położenie punktu P na ekranie x tg L
Slide 36
Dla dużych odległości można przyjąć, że promienie r1 i r2 są równoległe.
Slide 37
Dla dużych odległości można przyjąć, że promienie r1 i r2 są równoległe. W konsekwencji: d sin
Slide 38
Dla dużych odległości można przyjąć, że promienie r1 i r2 są równoległe. W konsekwencji: d sin Warunek na interferencję konstruktywną: r1 r2 m
Slide 39
Dla dużych odległości można przyjąć, że promienie r1 i r2 są równoległe. W konsekwencji: d sin Warunek na interferencję konstruktywną: x uwzględniając: tg , L da na położenie prążków jasnych: r1 r2 m dla małych kątów α xm m L d
Slide 40
Rozkład natężenia światła na ekranie (Young)
Slide 41
Rozkład natężenia światła na ekranie (Young) I 2I 0 2I 0 cos 2 2I 0 1 cos 2 4I 0 cos 2
Slide 42
Rozkład natężenia światła na ekranie (Young) I 2I 0 2I 0 cos 2 2I 0 1 cos 2 4I 0 cos 2 r1 r2 2 k r1 r2 2
Slide 43
Rozkład natężenia światła na ekranie (Young) I 2I 0 2I 0 cos 2 2I 0 1 cos 2 4I 0 cos 2 r1 r2 2 k r1 r2 2 r1 r2 x L L d
Slide 44
Rozkład natężenia światła na ekranie (Young) I 2I 0 2I 0 cos 2 2I 0 1 cos 2 4I 0 cos 2 r1 r2 2 k r1 r2 2 r1 r2 x L L d d x, lub x L L d
Slide 45
PODSUMOWANIE zjawiska dyfrakcji i interferencji to odstępstwa od modelu promieni, spowodowane falową naturą światła (skończona długość fali) zjawisko interferencji to nakładanie się fal przechodzących przez kilka otworów zjawisko dyfrakcji to nakładanie się fal przechodzących przez różne fragmenty tego samego otworu
Slide 46
PODSUMOWANIE o znaczeniu efektów dyfrakcji interferencji i dyfrakcji decyduje długość fali λ, wymiary otworów (otworu) R i odległość ekranu obserwacyjnego L dla L R R efekty dyfrakcyjne i interferencyjne dominują Dyfrakcja (interferencja) FRAUNHOFERA dla L R R dyfrakcja i interferencja modyfikują obraz geometryczny Dyfrakcja (interferencja) FRESNELA
Slide 47
PODSUMOWANIE Występowanie interferencji i dyfrakcji zależy także od spójności czasowej (monochromatyczności) i przestrzennej światła. Brak spójności czasowej to brak korelacji pomiędzy falami wyemitowanymi w różnych chwilach czasu przez to samo źródło światła; brak spójności przestrzennej to brak korelacji pomiędzy fazami światła emitowanego przez różne fragmenty klasycznego źródła światła
Slide 48
PODSUMOWANIE W doświadczeniu Younga (dwa otwory lub szczeliny) obserwujemy strukturę dyfrakcyjną; w tym prążek główny o szerokości R L R oraz nałożoną, na ogół gęstszą strukturę jasnych i ciemnych prążków interferencyjnych. Dla prążków jasnych różnica dróg jest równa całkowitej wielokrotności długości fali. Odległość pomiędzy prążkami jasnymi (lub ciemnymi) wynosi: x L d
Nie znalazłeść potrzebnej prezentacji multimedialnej? Wypełnij formularz a my zrobimy to za Ciebie i poinformujemy mailowo. Wszystko w mniej niż 24 godziny!